Engineering Salidroside Biosynthetic Pathway in Hairy Root Cultures of Rhodiola crenulata Based on Metabolic Characterization of Tyrosine Decarboxylase

نویسندگان

  • Xiaozhong Lan
  • Kai Chang
  • Lingjiang Zeng
  • Xiaoqiang Liu
  • Fei Qiu
  • Weilie Zheng
  • Hong Quan
  • Zhihua Liao
  • Min Chen
  • Wenlin Huang
  • Wanhong Liu
  • Qiang Wang
چکیده

Tyrosine decarboxylase initializes salidroside biosynthesis. Metabolic characterization of tyrosine decarboxylase gene from Rhodiola crenulata (RcTYDC) revealed that it played an important role in salidroside biosynthesis. Recombinant 53 kDa RcTYDC converted tyrosine into tyramine. RcTYDC gene expression was induced coordinately with the expression of RcUDPGT (the last gene involved in salidroside biosynthesis) in SA/MeJA treatment; the expression of RcTYDC and RcUDPGT was dramatically upregulated by SA, respectively 49 folds and 36 folds compared with control. MeJA also significantly increased the expression of RcTYDC and RcUDPGT in hairy root cultures. The tissue profile of RcTYDC and RcUDPGT was highly similar: highest expression levels found in stems, higher expression levels in leaves than in flowers and roots. The gene expressing levels were consistent with the salidroside accumulation levels. This strongly suggested that RcTYDC played an important role in salidroside biosynthesis in R. crenulata. Finally, RcTYDC was used to engineering salidroside biosynthetic pathway in R. crenulata hairy roots via metabolic engineering strategy of overexpression. All the transgenic lines showed much higher expression levels of RcTYDC than non-transgenic one. The transgenic lines produced tyramine, tyrosol and salidroside at higher levels, which were respectively 3.21-6.84, 1.50-2.19 and 1.27-3.47 folds compared with the corresponding compound in non-transgenic lines. In conclusion, RcTYDC overexpression promoted tyramine biosynthesis that facilitated more metabolic flux flowing toward the downstream pathway and as a result, the intermediate tyrosol was accumulated more that led to the increased production of the end-product salidroside.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Production of salidroside in metabolically engineered Escherichia coli

Salidroside (1) is the most important bioactive component of Rhodiola (also called as "Tibetan Ginseng"), which is a valuable medicinal herb exhibiting several adaptogenic properties. Due to the inefficiency of plant extraction and chemical synthesis, the supply of salidroside (1) is currently limited. Herein, we achieved unprecedented biosynthesis of salidroside (1) from glucose in a microorga...

متن کامل

Rhodiola crenulata and Its Bioactive Components, Salidroside and Tyrosol, Reverse the Hypoxia-Induced Reduction of Plasma-Membrane-Associated Na,K-ATPase Expression via Inhibition of ROS-AMPK-PKCξ Pathway

Exposure to hypoxia leads to impaired pulmonary sodium transport, which is associated with Na,K-ATPase dysfunction in the alveolar epithelium. The present study is designed to examine the effect and mechanism of Rhodiola crenulata extract (RCE) and its bioactive components on hypoxia-mediated Na,K-ATPase endocytosis. A549 cells were exposed to hypoxia in the presence or absence of RCE, salidros...

متن کامل

An Approach to Characterizing the Complicated Sequential Metabolism of Salidroside in Rats.

Metabolic study of bioactive compounds that undergo a dynamic and sequential process of metabolism is still a great challenge. Salidroside, one of the most active ingredients of Rhodiola crenulata, can be metabolized in different sites before being absorbed into the systemic blood stream. This study proposed an approach for describing the sequential biotransformation process of salidroside base...

متن کامل

Salidroside induces rat mesenchymal stem cells to differentiate into dopaminergic neurons

Parkinson's disease (PD) is a neurodegenerative disorder characterised by the loss of substantia nigra dopaminergic neurons that leads to a reduction in striatal dopamine (DA) levels. Replacing lost cells by transplanting dopaminergic neurons has potential value to repair the damaged brain. Salidroside (SD), a phenylpropanoid glycoside isolated from plant Rhodiola rosea, is neuroprotective. We ...

متن کامل

Trichoderma strains- Silybum marianum hairy root cultures interactions

Background and objectives: Silymarin is a unique flavonoid complex with documented hepatoprotective properties. Silybum  marianum hairy root culture as a source for producing silymarin has been an important strategy for study the cell signaling pathway. In the present investigation Trichoderma strains- Silybum marianum hairy root cultures interactions have been studie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013